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We assume the binary model

Y; ~ Bern(p;)
for i = 1,...,n. The logit link is used and so we have the relation
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First notice that there is a one-to-one correspondence between p; and 3 and so for the sake
of notation, we will write p; throughout for the likelihood term. Also, we can write the data

distribution as
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and thus this is a member of the exponential family with
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0; = log b(0;) = log (1 + €%).

Now, we assume that 3 ~ N(a,R) and so the posterior distribution is
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We will consider the Metropolis-Hastings algorithm, but with two different normal proposal

distributions. The first is a naive approach where we use a normal distribution centered
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around the previous value of 3 with a tuning covariance matrix as the proposal distribution
and the second is the BIWLS method. We derive the necessary pieces for the BIWLS method
below. First, notice that u; = p; for all 7 and so
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Therefore, the transformed observations has components
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Lastly, the second derivative of b(6;) wrt 6; is
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and therefore the inverse of the diagonal weight matrix has entries
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Thus, the diagonal weight matrix has entries given by
Wii(B) = pi(1 — pi).

Now, we use the normal distribution with m and C given in the Gamerman paper.



